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TIME EVOLUTION AND THE SCHRODINGER EQUATION

time evolution

|, 1) = |a) - la, 245 2).
time-evolution operator %(z,1,):
la, 23 1) =U(t,15)|a, 15).

o, 1) =D ¢ (t5)]a’).

at some later time, |a, 1,; ) = )_c,(t)|a’).

d

lc, (1) # e, (20)]
Z;|caf(ro)|2 =2 lc. (1)




fundamental properties of the % operator

<aa tolaa t0> =1= <a, IO? Ila, tO; t) =1
(1, 1,)%(1,1,) =1
U(ty,ty)=U(1,,1)U(11, 1), (t,>1,>1,)

lim %(¢t,+dr,t,) =1
lim (1, +di, 1)

be unitary: 71(4x’) 7 (dx’) =1.
T (dx”) T (dx’) =T (dx’+dx").
T(—dx’)=T (dx’).

lim 7 (dx’)=1
dx’— 0




all these requirements are satisfied by
U(ty+dt,1,)=1—iQdt (2.1.15)
where  is a Hermitian operator,* Qf=Q

U(ty+dt,+dty,ty)=U(ty+dty+dty, tyg+dt)U(ty+dty, 1)
Uty +de,tg)U(ty+dt,ty)=(1+i2dr)(1-iQdt) =1

T(dx’)=1—iK-dx’,



The operator €2 has the dimension of frequency or inverse time. Is
there any familiar observable with the dimension of frequency? We recall
that in the old quantum theory, angular frequency w is postulated to be
related to energy by the Planck-Einstein relation

E=ho. (2.1.19)

Let us now borrow from classical mechanics the idea that the Hamiltonian
1s the generator of time evolution (Goldstein 1980, 407-8). It is then natural
to relate 2 to the Hamiltonian operator H:

Q= % (2.1.20)

iH dt
U(t,+dt,t,) =1 7 (2.1.21)







The Schrodinger Equation

H
@(t +dt, r{}) _ %(Ia lrD) - !(—k_) dt@(t# to)s (2124)
Schrédinger equation for the time-evolution operator

0
z‘h-a-o?/(t,tg) =H%(t,t,). (2.1.25)

J
—> mﬁ%(“ to)la, 1) =HU(1,t,)|a,t,).
Schrodinger equation for the state ket

mgt-m, to;t)=Hla,ty;1), (2.1.27)



If we are given %(t, t,) and, in addition, know how %(t,¢,) acts on
the initial state ket |a, #,), it 1s not necessary to bother with the Schrodinger
equation for the state ket (2.1.27). All we have to do is apply %(¢,1¢,) to
la, 7,); in this manner we can obtain a state ket at any ¢.

. d
Zhat%

(£,20) = H%(tato)

Case 1. The Hamiltonian operator 1s independent of time.

— iH(i; ~ o) ] (2.1.28)

U(t,t,) =expl

To prove this let us expand the exponential as follows:

exp[ -iH(;—to)]=l_ iH(th— t) +[(_2,.)z [H(th—to) r+

(2.1.29)

Because the time derivative of this expansion is given by

;texp[hiH(};_IO)]——* +[(_2l) ] (h)(t—to)+

lim [1—(’H/h¥t_t0)] -exp[ iH(;_ZO)}. (2131)

(2. 1 30)

N — o0




Case 2. The Hamiltonian operator H is time-dependent but the
H’s at different times commute.

(t,t,) =exp[—(%)f’dfﬂ(r')}. (2.1.32)

Case 3. The H'’s at different times do not commute.

s —i\" 1t 4 lp—1
U(t, t,)=1+ ) (—-—h——) fdtlf dtz---f dt, H(t))H(t,)--- H(t,),
n=l oo D o (2.1.33)

which i1s sometimes known as the Dyson series, after F. J. Dyson, who
developed a perturbation expansion of this form in quantum field theory.
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Energy Eigenkets

To be able to evaluate the effect of the time-evolution operator
(2.1.28) on a general initial ket |a), we must first know how it acts on the
base kets used in expanding |a). This is particularly straightforward if the
base kets used are eigenkets of A such that

[4,H]=0; (2.1.34)

then the eigenkets of 4 are also eigenkets of H, called energy eigenkets,
whose eigenvalues are denoted by E .

Hla’y=E_ |a’). (2.1.35)

We can now expand the time-evolution operator in terms of |a’){a’|.
Taking ¢, = 0 for simplicity, we obtain

_th 77 77 _th p p ""iEart
)=ZZ|0 ){a Iexp( p )|a )(aI=Z|a’)exp( - )(a’|.

(2.1.36)

exp(

—iHl‘)

exp( ) = L la’Yexp( —5 < [Gat



As an example,

) = |, 1, =0) = Z|a><a|a> Zc la’)

la, 1) =|a,t,=0;¢) =exp( _IHI)IOO Z|a N(a’ |a)exp( _lf"’t).

E 1
—> ca,(t=0)-—>ca,(t)=ca,(t=0)exp( lh“ )

’ p - iEaft
@) =la’y —> la,1)=laexp| —52 ),
so if the system is initially a simultaneous eigenstate of 4 and H, it remains
so at all times. The most that can happen 1s the phase modulation,
exp(—iE t/h). It 1s 1n this sense that an observable compatible with H
[see (2.1.34)] is a constant of the motion.



In the foregoing discussion the basic task in quantum dynamics is
reduced to finding an observable that commutes with H and evaluating its
eigenvalues. Once that is done, we expand the initial ket in terms of the
eigenkets of that observable and just apply the time-evolution operator. This
last step merely amounts to changing the phase of each expansion coeffi-
cient, as indicated by (2.1.39).

Even though we worked out the case where there is just one observ-
able A that commutes with H, our considerations can easily be generalized

when there are several mutually compatible observables all also commuting
with H:

[4,B]=[B,C]=[A4,C]="--- =0,
[4,H]=[B,H]=[C,H]=---=0. (2.1.42)
Using the collective index notation of Section 1.4 [see (1.4.37)], we have
— i —iE it
exp( ;_!Ht) =Y |K’>exp( IhK )(K’|, (2.1.43)
K’

where E,. is uniquely specified once a’, b’, c’, ... are specified. It is there-
fore of fundamental importance to find a complete set of mutually compatible
observables that also commute with H. Once such a set is found, we express
the initial ket as a superposition of the simultaneous eigenkets of 4, B,C, ...
and H. The final step is just to apply the time-evolution operator, written as
(2.1.43). In this manner we can solve the most general initial-value problem
with a time-independent H.



Ll polde £_5.3Lo)' (Sl
oS dunolee 395 o ol H g AL Logy) 51, B

la’ to=051)=%(1,0)|a’)  (2.1.44)

(By=(a'|%"(1,0))-B-(%(1,0)|a’))

., ikt B —iE )
R <(1 |exp( h ) exp( h )la >

== <a'|Bla'>, (2145)
which 1s independent of t¢.

dawlee ;53)3‘ dla cJls 0599 ;0 By pdy sdalie S bllesds Hlde 1dowid

5P b 0dag )bl (e 4 usl ploj 5 Jiune) L8 (o pS loj L 29 (s
AueS o (Stationary state) Ll cJbs |,



Ll polde £_5.3Lo)' (Sl

Jol> 55l (o o ooy (6 w2 5 &) Ble ot o o], (bliadi jlade 51
PO l.'?bo
.9 =0y = Eeyla’).  (2.1.46) S Al 395 (0

(B)

E cx(a lexp( Ea t) - [Z caf:exp( — ’f“"t ) Ia"’>-

a.’f
o Ea’)t]

[ —i(E .
h

=

Y ) c*c,.{a’|Bla” Yexp (2.1.47)

aaly 5l ol el augly slS )8 &S sy dalgd Slog dles SO tilieis lude

1S (o Camb ypg (ilS )3
(E, - E,)
Wy = h (21 48)
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Spd [ S yinla | Kid9) 503
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Joe (loj b el slo o8 &Sl sl 4 ol )3 457 3)b 352 o2 (6,500 célan

Ggpo Sy poal & célay cpl Wgd (0 Jooio loj b baSlas g

S ) A2 (oo e |y s 08l 8 o - SO

el )85 25 s daily S b g5, S0 slaKles S
la) > Ule)
where U may stand for J (dx) or %(t,t,)

T — ) e
(Blay = (BUTU|a) = {B|a) UUT =1 0%



(Blay = (BUTU|a) = (Bla)
(BIX|a)y = ((BIU)-X-(Ula)) = (BIUTXU|a)

(BIUT)-X-(Ulay) = (B|-(UTXU)-|a).
Approach 1:

la) - Ula), with operators unchanged,

Approach 2:
X - U'XU, with state kets unchanged.

(2.2.4)

(2.2.5a)

(2.2.5b)
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U(1,1,=0) = U(1) =exp( ‘”“)

h

AD() = U (1) ADU(1) 4 (0) = A4S

@, tp=0;0)y=la,10=0) |a,1,=0;1)5=%(t)|a,t,=0)

The expectation value ( A) is obviously the same in both pictures:

§{(a,10=0;1|Aa,1,=0; t)s=(a, 1, =0|%'A>U|a, 1, = 0)
= y{a,t,=0;1|A"(t)]a,t,=0; 1) y. (2.2.14)
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Spipld poad )3 S > dolee

dAM) gyt oY
9% 4™ t4(H 9%
i T g AT,
= — ;%@TH@@TA‘SW/ + -I_%@TA(S)@@TH@/
1 |
= EE[A(H),@TH@], (2.2.15)
where we have used [see (2.1.25)]
o 1
= QY 2.2.
dt ihH ’ (2.2.16a)
A 1
= — — gyt
o = U'H . (2.2.16b)
H =9 Hy (2.2.17)

9 and H obviously commute; as a result,

UTH¥ = H, (2.2.18)
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dA)
dt

Heisenberg equation of motion

= ;E[A(H),H] (2.2.19)

(Goldstein 1980,405-6) 4 _ [ 4 H] .  (22:20)

dt

[ ]

Ih %[ ’ ]classical




9S> Sgela

Sodele o ) Setieln W)l SewdS alie &S SK5b o gl Gy
Siud Slas 5 5 K0 &S puid d>gio 288 L pun gl 0 SwS

Wl (e
we write the quantum-mechanical analogue

of the classical product xp as 3(xp + px).

JSb g moi i Wb 1) (Setdeels JSb il 4l (SewdlS Jolee (ot )5
255 Sy (2Rl @ L gl b oS ploel ) Lalse (sl



[x., F(p)] = r’h% (2.2.23a) Hade Jgo8 U g3
| p;.G(x)] = - fhgxﬁ, (2.2.23b)

(U295 (sly) oy yes

Syipla o 5 odlizal U1, blis Jsiloln b 03 K e8> ¢ aoleo

p’ A 90
= 5 + V(x)
dzx u‘9.>

m—-=—VV(x
dt® (x)
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Cnd y] dud

This is the quantum-mechanical analogue of Newton’s second law. By
taking the expectation values of both sides with respect to a Heisenberg
state ket that does not move with time, we obtain

<X> _ 4 _

This is known as the Ehrenfest theorem after P. Ehrenfest, who derived it in
1927 using the formalism of wave mechanics. When written 1n this expec-
tation form, 1ts validity is independent of whether we are using the Heisen-
berg or the Schrodinger picture; after all, the expectation values are the
same 1n the two pictures. In contrast, the operator form (2.2.35) 1s meaning-
ful only 1f we understand x and p to be Heisenberg-picture operators.

o d G ot (635 Gidio ikl lo (Slae 4 o lo ()5 Grio a5 b (! Do

oH\ 0 b8 ploil buwgie
= H (), t
<8p> R ]

—(VV(x)). (2.2.36)




Tl s Sy oo

A8l o bl (gl (B ax puisn WL Syl pgal

Alay=ala’y  4N(1)=24(0) 2
UTA0)% U \a"y =a¥T|a")

ih%%(r,t0)=H%(I,tU)

A (UMa’)) = a’(U'|a’)) A
! ! * a ’ ’
ja’, 1y, = |a’") ih—la’, ), = = Hla',t)y

cl)= (@l - (Ua,15=0))
base bra state ket (the Schrodinger picture) (2.2.44a)

c (1) = £< a'l%ﬂ)/'\}_"" th=0) (the Heisenberg picture). (2.2.44b)

. "

base bra state ket 26



